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TABLE III. 
Partial volumes measured 23 .852 8 .468 10 

24.942 11.379 5 
28.443 8.589 20 

29 

7 
24 

Sum 77 .237 28 .436 98 
Direct determination of total volume 77.244 28.443 98 

800 i.201 

268 0.219 

791 

671 

647 

690 

867 i.420 

31 I-4I3 

The data presented in the above tables indicate a percentage accuracy 
on a sample of 100 cc. which is comparable with the accuracy of good 
titrimetric determinations. 

Since the size and shape of the container in which the gas is measured 
are determined only by convenience, the method is obviously suited to 
the measurement of much larger volumes of gas than were here deter­
mined. Water can, of course, be used as the confining liquid with the 
usual limitations on account of • solubility. 

The apparatus can also be easily adapted as an accurate and convenient 
gas volumeter for determining the amount of gas evolved from a solid or 
liquid by any chemical reaction. For this purpose the weight of sample 
taken and the amount of gas confined in the compensator may be so re­
lated that the weight of confining liquid will be a simple multiple of the 
percentage of the constituent to be determined. 

Summary. 
An apparatus for conveniently determining small quantities of gas by 

weighing the confining liquid displaced is described and its percentage 
accuracy is shown to be comparable with the general accuracy of good 
titrimetric measurements. 

WASHINGTON, D. C. 
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From a thermodynamic point of view, the problem of chemical affinity 
may be considered as completely solved, as soon as we have determined 
the heat content and the entropy content of all the reacting substances 
in which we are interested. The solution of this important task has been 
greatly simplified by the work of Nernst and Planck in introducing the 
so-called third law of thermodynamics, which states that the entropy 
content of solids and liquids becomes zero at the absolute zero of tempera­
ture. This has made possible a determination of the entropy content of 
solids and liquids at any temperature merely from a knowledge of specific 
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heat data. The next step in this field of thermodynamic chemistry is a 
consideration of the underlying principles determining the entropy of 
gases and solutes. 

Considerable theoretical speculation on the problem of the entropy of 
monatomic gases, or on the equivalent problem of determining Nernst's 
so-called chemical constants, has already been done by Sackur,1 Tetrode,2 

Stern,8 Keesorn,4 Nernst,3 Ratnowsky6 and Lindemann.7 These investiga­
tors have obtained a considerable measure of agreement in their conclusions 
in spite of the fact that they have based their work on a variety of as­
sumptions which are hard to disentangle, and sometimes conflicting. 
Comparisons of experimental data with the results of these theoretical 
predictions have been made by Nernst8 and Egerton.9 

The purpose of the present paper is first to derive an equation for the 
entropy of a monatomic gas in a new and very simple way, making use 
of the author's theory of similitude,10 and then to compare the predicted 
results with the relatively accurate values of the entropies of the elements 
which have been presented by Lewis and Gibson.11 It should be noted 
in this connection that the entropy values of Lewis and Gibson have been 
obtained from plots of actual specific heat data and hence provide a more 
satisfactory basis of comparison than was available to Nernst13 and 
Egerton. 

i . General Equation for the Entropy of a Perfect Monatomic Gas,— 
Since the heat capacity per rnol at constant pressure for a perfect mon­
atomic gas is exactly equal to (5/2) R and the heat absorbed when the 
pressure is changed reversibly at temperature T from pi to pi is exactly 
equal to RT ln(pi/pi), we can evidently write as an expression for the 
entropy of a perfect monatomic gas at temperature T and pressure p, 

S = S1 + 5/2 R In T — RIn p, (1) 

where Si is the entropy of the gas at unit temperature and unit pressure. 
An examination of this equation shows that the problem of determining 

'Sackur, Ann. phys., 36, 598 (1911); 40, 67 (1913). 
2 Tetrode, ibid., 33, 434 (1912)-
3 Stern, Physik. Z., 14, 629 (1913); .4»». Phys., 44, 497 (1914). 
4 Keesom, Physik. Z., 15, 217 (1914). 
B Nernst, Ver. deut. physik. Ges., l 8 , 83 (1916). 
6 Ratnowsky, ibid., 18, 263 (1916). 
I Lindemann, Phil. Mag., 38,173 (1919); 39, 21 (1920). 
8 Nernst, "Die Theoretischen und Experimentellen Griindlagen des neuen Warme-

satzes" (1918). 
9 Egerton, ibid., 39, 1 (1920). 

10 Tolman, Phys. Rev., 3, 244 (1914); 4, 145 (1914); 6, 219 (1915); 8, 8 (1916); 

9, 237 (1917)-
I I Lewis and Gibson, T H I S JOURNAL, 39, 2554 (1917). 
12 A number of additional gases other than those considered by Nernst and Egerton 

will be treated in this paper. 
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the entropy of perfect monatomic gases will be completely solved as soon 
as we have some means of predicting the value of the undetermined 
quantity Sx. This quantity will obviously depend in the first place on the 
units of entropy, temperature and pressure employed, and in the second 
place may depend on the properties of the particular gas which is under 
consideration. Since the gases to be considered are by hypothesis both 
perfect and monatomic, they can theoretically consist only of non-at­
tracting, point particles and hence such gases can differ from each other 
only in the mass of these point particles, i. e., in their molecular weight 
W. Under these circumstances the only property of the gas upon which 
Si can depend is the molecular weight m. Hence we can obviously re­
write Equation 1: 

S — 4>{m) + 5/2 RIn T — RIn p (2) 

where 4> is some functional relation whose form we wish to determine. 

2. Application of Theory of Similitude.—The theory of similitude,1 

requires that all the general equations of physics must be completely 
invariant when the different physical variables contained in the equation 
are transformed in accordance with a particular set of transformation 
equations which have been developed from the theory. For the quan­
tities involved in our equation, i. e., entropy (per mol) S, mass (per mol) 
m, heat capacity (per mol) R, temperature T, and pressure p, the trans­
formation equations developed from the theory of similitude are as follows: 

S = 5 ' m = » ' R = R' T = xT' p = xlp' (3) 

where x may be any pure number. 

Substituting in Equation 2 we obtain, 

5 ' = 4>(xm') + 5/2 R' In %T — R' In x*p'. (4) 
In accordance with the invariance demanded by the theory of simili­

tude the function 4> must be of such a form that all the x's in (4) shall 
cancel out, and by inspection we see that this can only be true when <f> 
has the form 

4>{m) = RIn a(m)z/°~ (5) 
where a is a general constant independent of the gas. Substituting in 
Equation 2 we obtain as our final equation, 

5 = 3 / 2 R In m + S/2 RlnT- RIn p + S0 (6) 

where the quantity S0 = ^/2 R In a is a general constant independent of 
the particular gas. 

We have thus obtained in a very simple way a general equation for the 
entropy of perfect monatomic gases. In a later section of the article we 
shall compare the available experimental data with the predictions of this 
equation. 

1
 LOG. cit. 
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3. Other Theoretical Methods of Attack.—Equation 5 or its equivalent 
has been derived by several investigators. 

Ivindemann1 has applied dimensional reasoning to the equivalent prob­
lem of determining the relation between the molecular weight m and 
Nernst's chemical constant C which is directly related to our quantity 
Si, and has arrived at conclusions that are in; agreement with ours. I t 
is important to point out, however, that the successful application of 
dimensional reasoning to this problem requires additional and aribitrary 
assumptions over those necessary for solving the problem by the theory 
of similitude. Referring again to Equation 2 we see, since S and R both 
have the same dimensions, that <£(m) must have the dimensions of 
R In pT~s/* or written in the form of a dimensional equation 

[01 - [mlH^T-1 In nd-H-*T-%h\. 
Now, it is obvious that no function of m alone can have these required 
dimensions, and hence since we have already come to the conclusion that 
m is the only "dimensionable variable" entering the function 4>(m), it is 
evident that <f>(m) must also include one or more "dimensional constants." 
Since, however, we have no way of knowing beforehand what these 
"dimensional constants" may be, we have no way of solving the problem. 
In order to try to meet this difficulty, we could follow Lindemann1 by 
making the additional assumption that the only dimensional constants 
involved in 4>(m) are Planck's constant h and Boltzman's constant k = 
R/N and would then find it possible to derive our final equation (6), 
by finding the only combination of m, h and k which has the dimensions 
required by Equation 7. This added assumption seems, however, rela­
tively arbitrary and greatly reduces the value of the attempted dimensional 
treatment. 

Sackur, Tetrode, Stern, Keesom, Nernst and Ratnowsky2 have all also 
derived equations of the form (6) for the entropy of a perfect monatomic 
gas. Their work is based on a variety of assumptions which are rather 
difficult to disentangle and they do not come to complete agreement as 
to the magnitude of the universal constant which we have called S 0 ; 
they all agree, however, that the entropy of a monatomic gas depends 
on the atomic weight in the way predicted in our equation. To give a 
partial statement as to the kind of assumptions which they have employed, 
Sackur's first derivation was based on the Sommerfeld hypothesis that every 
element of action in the universe is some multiple of the fundamental 
constant of action h. In his later derivation he abandons this hypothesis 
on account of the fact that action is the product of two quantities, energy 
and time, both of which are presumably continuous in nature, and bases 
his conclusions on what he conceives to be a fundamental analysis of the 

1
 LOG. cit. 

2 All foe. cit. 
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significance of h. Tetrode bases his work on the assumption that the 
volume <r, of the "cells of equal probability" into which we can divide 
the in dimensional space familiarly used in the considerations of statistical 
mechanics for plotting the values of the n generalized coordinates and n 
generalized momenta belonging to the elements of the system, can be put 
equal to zh where h is Planck's constant and z is a pure number. Stern's 
value for the entropy of a perfect monatomic gas is obtained by consider­
ing the entropy increase in heating a solid from the absolute zero to a 
point where Dulong and Petit's law holds, and then vaporizing. To 
determine the entropy increase in heating the solid he makes use of the 
Planck-Einstein formula for the specific heat of a solid with a single 
frequency of vibration and to determine the entropy of evaporation he 
makes use of theoretical molecular speculations. The particular and 
improbable assumptions as to the nature of the solid are found to dis­
appear from the final result. Keesom, Nernst and Ratnowsky all assume 
a so-called "nullpunkt energie" e0 for the lower value of the energy 
at the absolute zero still associated with a degree of freedom of frequency 
v. This "nullpunkt energie" in the Nernst treatment is in equilibrium 
with radiant energy in the ether, On rise of temperature, energy is 
drawn not only from the surroundings but also from the reservoir of 
"nullpunkt energie" and the principle of the conservation of energy 
becomes merely statistically true rather than true for the individual 
elements of the system. It is evident that the theories in question (like 
so much of quantum theory) are still in their birth-pangs. For the time 
being, the simple although non-mechanistic treatment afforded by the 
theory of similitude may prove useful. 

4. Entropy of Gases in General.—The above treatment provides 
primarily a method for calculating the entropy of gases which are mon­
atomic. The work of Eucken, however, has shown that hydrogen has 
only 3 degrees of freedom at low temperatures, and we are led to expect 
that all gases will behave as though monatomic at low enough tempera-
tares. This will permit us to calculate the entropy of any gas at any 
temperature as soon as we obtain the necessary specific heat data bridging 
over the gap between very low and moderate temperatures. In the case 
of hydrogen such a calculation is already possible, and in the sequel we 
shall show the agreement between the experimental and predicted re­
sults for this gas. 

5. Calculation of Results.—Returning to our fundamental equation 
(6), we have 

S = 3 / 2 R In m + 5 / 2 RInT — R In p + S0 (6) 

where S0 is a constant independent of the nature of the gas. Since we 
shall use this equation for calculating entropies always at 25 ° and one 
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atm. pressure, T and p become constant and the equation can be rewritten 
for our purposes in the form 

S29S = 6.87 log m + C. 
Helium.—-We shall choose the gas helium for determining the value 

of JJ. In accordance with Lewis and Gibson,1 we shall take Sw& = 29.2 
and shall take m = 4.00.• We obtain C = 25.1, and may now write, 
for any monatomic gas of molecular weight, m, 

S298 = 6.87 log m + 25.1. (7) 

Argon.—For argon Lewis and Gibson1 give the value S29S = 36.4, 
while a substitution of wt = 40.0 gives SM$ = 36.1 a satisfactory check. 

Mercury, Cadmium, Zinc, Platinum, Molybdenum, Tungsten.—The 
vapor pressures for a number of metals which give monatomic gases have 
been determined and expressed in the literature by a formula of the 
Hertz type, 

log p(xam.) = —A/T + B log T + C. (8) 

Assuming this formula to be accurate enough for purposes of extrapola­
tion, it may be used for determining the change in entropy at 298 ° when 
the metal is evaporated at its vapor pressure and then compressed to one 
atmosphere. Changing to natural logarithms and to pressures in at­
mospheres we may write in place of Equation 8, 

In £(atm.) = —2.3 A/T + B In T + 2.3 C — 2.3 log 760. (9) 
Differentiating and substituting into the Clausius equation, d In p/d d'f = 
L/RT*, we obtain 

LIT = (2.3 AR/T) + BR (10) 

and this is the entropy increase when we evaporate at temperature T 
to form vapor at the vapor pressure p. Adding the quantity R In p, 
which is the increase in entropy when we change to a pressure of one 
atmosphere, and making use of Equation 9, we obtain, 

AS - L/T + R In p = BR + BRInT + 2.3 CR — 2.3 R log 766. 
Since we shall be interested in the value of A5 at 298 ° absolute, we may 
substitute T = 298, R — 1.99 and obtain, 

AS29S = 13-33 B + 4.58 C—13.65. (11) 
This equation gives us the increase in entropy when one mol of vapor 

at atmospheric pressure is formed from the condensed phase at 298 ° 
absolute. We may apply it to the following vapor pressure data: 

Mercury.—Vapor pressure measurements by Knudsen,2 between 273° 
and 323° absolute: 

log p(mm.) = (—3342.26/21 — 0.847 log T + 10.5724. 
1 Loc. cit. 
2 Knudsen, Ann. phys., 29, 179 (1909). 
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Cadmium.—Vapor pressure measurements by Bgerton1 between 411.2 
and 545.5° absolute: 

log p{mm.) = (—6060/T) — 0.5 log T + 10.5979. 
Zinc,—Vapor pressure measurements by Egerton,1 between 529.8 and 

636.0° absolute: 

log p{mm.) = (—7176/71 — 0.5 log T + ia-9433-
Platinum.—Vapor pressure measurements by Langmuir and MacKay,2 

between 1682 and 2000 absolute: 

log p(mm.) — (—27800/T) — 1.26 log T + 14.09. 
Molybdenum.—Vapor pressure measurements by Langmuir and Mac-

Kay,2 between 1994 and 2373 absolute: 

log p{mm.) = (—38600/T) — 1.26 log T + 17.354-
Tungsten.—Vapor pressure measurements by Langmuir,3 between 2440 

and 2930° absolute: 

log p{mm.) = (—47440/J) —0.9 log T + 15.502. 
Applying Equation 11 to the above data, adding the values given by 

Lewis and Gibson4 for the entropy of the condensed phase at 298° absolute, 
and comparing with the results of the theoretical Equation (7), we obtain, 

Mercury 
Cadmium 
Zinc 
Platinum. 
Molybdenum 

Lewis-Gibson. 

. . . 1 7 . 8 

I I .6 

. . . 9 . 8 

. . . 10.O 

7-5 
. . . 8 . 4 

^ S 298°. 
Equation 11. 

2 3 . 3 
2 8 . 2 

2 9 . 9 

3 3 - 9 
4 8 . 9 

4 5 - 3 

S 298°. 
JJxperituetital. 

4 1 . 1 

3 9 . 8 
3 9 - 7 

43 .9 
5 6 . 4 

5 3 - 7 

S 298°. 
Theoretical 

4 0 . 9 

3 9 - 2 

3 7 - 6 

4 0 . 8 

3 8 . 7 

4 0 . 7 

There is good agreement between the experimental and theoretical 
values of entropy except for molybdenum and tungsten. This lack of 
good agreement is not surprising, in veiw of the vapor pressure extrapo­
lation over a range of 20000. 

Monatomic Bromine, Iodine and Hydrogen.—Free energy and entropy 
are connected by the equation, 

AS = (AH — AF)/T (12) 
where AS is the increase in entropy accompanying a reaction at tempera­
ture T, AH being the increase in heat content and AF, the increase in 
free energy. Using the nomenclature of Lewis we may write, 

AH == AH0 + ATo T + AT1Z2 ^2 + Ar»/3 T3 + 
AF = AH0- AT0 TInT- AT1/2 J 2 — Ar2/6 Ts 

1 Egerton, Phil. Mag., 33, 333 (1917). 
3 Langmuir and MacKay, Phys. Rev., 4, 377 (1914). 
8 Langmuir, ibid., 2, 329 (1913). 
4 Loc. cit. 

+IT 
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where I is an integration constant and the AF terms are dependent in a 
familiar way upon heat capacities. Substituting into Equation 12 we 
obtain, 

AS = Ar0 + Ar0 InT + AT1T + ATt/2 T2 + . . .—I. (13) 
This equation can be applied to the following free energy data. 
Bromine.—Lewis and Randall1 give the following free energy equation 

for the reaction Br(I.) = Br(g.) based on dissociation measurements 
between 1073 and 1323 ° absolute. 

AF = 31425 + 3.05 T In T + 0.001 T2 —48.14 T. 

Iodine.—Lewis and Randall2 give the following free energy equation 
for the reaction 7(s.) = I(g.) based on dissociation measurements between 
1073 and 1473 ° absolute. 

AF = 26275 + 1.60 T In T — 40.36 T. 

Hydrogen.—Lewis and Randall3 give the following free energy equation 
for the reaction Hi = 2H based on dissociation measurements between 
2500 and 3000 ° absolute. 

AF == 61000 —3.5 T In T + 0.00045 T2 + 20.2 T. 

Applying Equation 13 to the above data, using T = 298, adding the 
values given by Lewis and Gibson,4 for the entropy of the undissociated 
gas at 298 ° absolute, and comparing with the results of the theoretical 
equation (7) we obtain, 

AS 298°. 5 29S0. S 298°. 
Lewis-Gibson. Equation 13. Experimental. Theoretical. 

Bromine (Br) 18.5 27.1 45.6 38.2 
Iodine (I) 15.7 29.6 45.3 39.6 
Hydrogen (H) . . . . 15.9 1.5 17.4 25.1 

The relatively poor agreement is probably due to the wide extrapolation 
necessary from temperatures where the equilibrium could be measured. 

Diatomic Hydrogen,—As already stated, our theoretical equation not 
only makes possible a prediction of the entropy of monatomic gases, but 
since all gases become monatomic at low temperatures, permits a treat­
ment of all gases as soon as the necessary specific heat data are available. 
In the case of hydrogen such data have been obtained by Eucken,5 

Plotting Eucken's data for the specific heat of hydrogen against the 
logarithm of the temperature, it was found that the entropy of hydrogen 
(Ht) at 2980 is 1.4 units greater than it would be if it had remained a 
monatomic gas way up to that temperature. Using our theoretical 
Equation (7) for the entropy of a monatomic gas and adding 1.4 we get 

1 Lewis and Randall, T H I S JOURNAL, 38, 2348 (1916). 
2 Lewis and Randall, ibid., 36, 2259 (1914). 
3 Lewis and Randall, ibid., 36, 1969 (1914). 
4 hoc. cit. 
6 Eucken, Sitzb. kgl. preuss. Ahad., 1912, 148. 
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28.6 as compared with the two values of I,ewis and Gibson 29.4 and 31.8, 
a satisfactory check, although they believe the higher value is the more 
reliable. 

6. Summary of Data.—-The following table presents a comparison of 
the experimental results for the entropy of gases at one atmosphere and 
2980 absolute, and the theoretical results predicted with the help of the 
equation, 

S = (3/2) Rlnm + (5/2) R In T-R In p + S0 

— 6.87 log m + 25.1 (at i atm. and 2980 abs.). 
The second column states the range of temperature over which extra­
polation has to be made in order to compare the results, and these results 
are arranged in the order of the uncertainty introduced by this factor. 

Range over which 
extrapolation 

was made. 
Gas. 

Helium 
Argon. None 
Mercury None 
Hydrogen (H2). . . None 
Cadmium. 
Zinc 
Bromine.. 
Iodine 
Platinum. 

150 

300 

900 

900 

.. 1500 

Molybdenum 1700 
Tungsten 2100 
Hydrogen (H). . . . 2300 

S 298°. 
Experimental. 

2 9 . 2 

36 
41 

31 

39 

39 

45 

45 

43 
56 

53 

17 

4 
i 

8(29.4) 

8 

7 
6 

3 

9 

4 

7 

4 

•S 298°. 
Theoretical. 

36 

40 

28 

39 

37 

38 

39 
40 

38 
40 

25 

I 

9 
6 

2 

6 

2 

6 

8 

7 

7 
i 

DiS. 

O 

O 

3 
0 

2 

7 

5 

3 

17 

13 

7 

3 
2 

2 

6 

i 

4 

7 
i 

7 
0 

7 

The agreement between the experimental and theoretical values is 
very close in cases where wide extrapolation does not have to be made 
and is probably within the experimental error in all cases. I t should 
also be noted that the nature of the experimental results alone is enough 
to show that entropy of gases is certainly not entirely a fortuitous matter. 

WASHINGTON, D. C. 


